Scalable Machine Learning with Dask


Follow to receive video recommendations   a   A

This talk demonstrates how to scale a Python-based machine learning workflow to larger models and larger datasets. The talk will introduce a common workflow using NumPy, pandas, and scikit-learn, and discuss some challenges with scaling that workflow out to larger datasets. We'll then see how dask and dask-ml work with and extend these libraries to enable large-scale parallel and distributed machine learning.

Editors Note:

I would like to work with open source projects to create a branch of the tree with all of the best videos for your open source project. Please send me an email if you are interested.