Data Engineering for Data Scientists - Max Humber


Follow to receive video recommendations   a   A

AnacondaCon 2018. When models and data applications are pushed to production, they become brittle black boxes that can and will break. In this talk you’ll learn how to one-up your data science workflow with a little engineering! Or more specifically, about how to to improve the reliability and quality of your data applications... all so that your models won’t break (or at least won’t break as often)! Examples for this session will be in Python 3.6+ and will rely on: logging to allow us to debug and diagnose things while they’re running, Click to develop “beautiful” command line interfaces with minimal boiler-plating, and Pytest to write short, elegant, and maintainable tests.

Editors Note:

I would like to work with open source projects to create a branch of the tree with all of the best videos for your open source project. Please send me an email if you are interested.